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ABSTRACT

Since its discovery, more than a decade ago, induced pluripotent stem cells (iPS) have had a prominent relevance in
the environments of biomedical research and, at the same time, their origin has been related to the search for an
ethical alternative to use of the stem cells obtained from internal mass of the human embryo.

In this article we intend to give an overview of its possible applications in the advancement of biomedicine and its
relationship with bioethics. From its possible application to regenerate tissues, after proceeding to their differentia-
tion; testing of drugs for different conditions; or their use in models of diseases, among which the neurological ones
stand out. Also, its application in obtaining germ cells and human embryos.

The situation of the first clinical trial to regenerate a tissue from the subject’s own iPS cells, and the recent allogeneic
transplantation in Japan, suggest advances in the clinical translation of these cells. On the other hand, the production
of germ cells from iPS cells and the new cells called extended pluripotent stem cells (EPS), obtained by genetic re-
programming through a chemical cocktail, that give rise not only to the tissues of the embryonic layers, but also ex-
tra-embryonic, are a new path to making clonation by another route.

RIASSUNTO
Uso clinico ed etico delle cellule pluripotenti indotte.

Fin dalla sua scoperta, per oltre un decennio, cellule staminali pluripotenti indotte (iPS) hanno un’importanza no-
tevole nella ricerca biomedica ambienti e, allo stesso tempo, la sua origine é legata alla ricerca di un’alternativa
etica all’utilizzo le cellule staminali ottenute dalla massa interna dell’embrione umano.

In questo articolo diamo una panoramica delle possibili applicazioni nell’avanzamento biomedicina e la loro rela-
zione bioetica. Dalla sua possibile applicazione di rigenerare il tessuto, quindi procedere alla differenziazione; la
sperimentazione di farmaci per diversi disturbi; o il suo uso in modelli di malattie, tra cui spiccano quelle neurolo-
giche. Cosi come la sua applicazione nell’ottenere cellule germinali e embrioni umani.

La situazione del primo studio clinico per rigenerare un tessuto da cellule iPS e proprio trapianto recente del soggetto
in Giappone rappresentano passi nella traduzione clinica di queste cellule. Inoltre la produzione di cellule germinali
dalle cellule iPS e nuove cellule chiamate cellule staminali pluripotenti estesi (EPS), riprogrammando geneticamente
da un cocktail chimico, causando non solo ai tessuti degli strati embrionali, ma extraembrionali anche costituire un
nuovo percorso verso la clonazione di un altro itinerario.

Parole chiave: cellule staminali pluripotenti indotte, differenziazione cellulare, riprogrammazione cellulare, cellule
staminali totipotenti.

Keywords: induced pluripotent stem cells, cell differentiation, cellular reprogramming, totipotent stem cells.
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1. Introduction. What are Stem Cells?

The stem cells are those that possess
three properties that make them different
from other cells in an organism. First, they
are undifferentiated cells, that is, they do
not have the phenotypic characteristics of
the cells of each tissue of an adult orga-
nism. Second, they self-perpetuate, that is,
they can divide themselves to produce cells
identical to the original, indefinitely. Third,
they are capable, under certain natural or
experimental physiological conditions, of
giving rise to other cells that will produce
already differentiated or specialized cell li-
nes for a given function. The stem cells ha-
ve the possibility of performing an asym-
metric division to give rise to a cell that is
a replica of the original and another with
the ability to differentiate itself [1-3].

The zygote is the first cell of the orga-
nism, the one that gives rise to the others,
the mother of all cells. When talking about
stem cells, we speak of stem cells of em-
bryonic origin and stem cells from specific
tissues or adult stem cells. From stem cells,
various types of cells have been obtained
in the laboratory, from blood cells to neu-
rons, which has led to the possibility of cu-
ring, with them, various diseases.

According to their differentiation capa-
bility to originate specialized tissues, the
stem cells can be:

— totipotent: they give rise to both the
entire embryo and extraembryonic tissues.
They can originate a complete individual
as it happens with the zygote that is im-
planted in the uterus;

— pluripotent: they give rise to tissues
of the three embryonic layers: ectoderm,
mesoderm and endoderm. This happens
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with the internal cell mass of the blasto-
cyst, whose cells can give rise to all types
of somatic and germ cells, if they are injec-
ted into a blastocyst, but do not originate
the trophectoderm. Embryonic stem cells
originate from this internal cell mass;

— multipotent: they give rise to single-
layer embryonic cell lines. Adult stem cells
are often considered multipotent but there
is evidence of greater plasticity. Actually,
during embryonic development they gra-
dually lose their potential: the multipotent
cells come from the pluripotent cells;

— unipotent: they give rise to a cell line:
a single type of differentiated cells, becau-
se they have lost the plasticity to originate
other tissues and have what is called linea-
ge commitment. However, it has been ve-
rified that some of them retain their pluri-
potency [4-5].

There are authors who only speak of to-
tipotentiality and progenitor or precursor
cells with different degree of undifferentia-
tion [6-7].

Currently, stem cells are used in a few
already proven therapies such as hemato-
logical, immune and tumoral diseases [8];
transplant of corneal limbus stem cells to
repair ulcers [9]; therapy with mesenchy-
mal stem cells to treat graft-versus-host
disease in children [10]; therapy with
stem cells derived from allogeneic expan-
ded adipocytes (Cx601) in patients with
Crohn’s disease and perianal fistulas [11].
In addition, as we recently revealed in a
research article, therapies that have not
yet been reliably demonstrated are offe-
red, which constitutes an important ethical
breach [12].



2. A new Kkind of pluripotent stem cells:
induced pluripotent stem cells (iPSCs)

In 2006, a new technique emerged, ha-
ving the team of S. Yamanaka as its author.
These researchers carried out an experi-
ment in mice that consisted in the repro-
gramming of somatic cells by means of a
group of genes transferred via a retrovirus
(lentivirus). After many tests with 24 pos-
sible genes that are associated with em-
bryonic stem cells, Yamanaka was left with
four: Oct3/4, Sox2, Kfl4 and cMyc, which
allowed him to obtain cells with stem cha-
racteristics. Because of the obtaining me-
thod, they were classified as induced plu-
ripotent stem cells (induced Pluripotent
Stem cells: iPSCs) [13]. This confirmed
that the differentiation process was not ir-
reversible.

This technique was born because of a
series of previous investigations, such as
the studies in which Gurdon demonstrated
the acquisition of pluripotency by cell re-
programming in cloning experiments by
nuclear transfer [14], and the production
of the Dolly sheep for which Wilmut pro-
ved that the cloning could take place in
mammals [15]. Secondly, Weintraub’s re-
search showed that fibroblasts could be
converted into myoblasts by transduction
with the MyoD gene [16]. The third line of
research was the development of embryo-
nic stem cells from mouse by Evans and
Martin [17-18]. Smith identified many es-
sential factors for pluripotency [19] and
Thompson generated human embryonic
stem cells [20]. Pluripotency can be indu-
ced by transcription factors or by modula-
tion of key pathways with microRNAs,
proteins or small molecules, which has
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caused drastic changes in the field of rese-
arch with iPSCs [21].

3. The iPSCs cells and their approach to
therapeutic use

Due to the importance of the discovery
of the iPSCs, which won the Nobel Prize,
it seems appropriate to review their current
and future applications. Induced pluripo-
tent stem cells begin their path to therapeu-
tic use. A clear utility of the iPSCs is the
possibility of having disease models. [22-
27]

Although the greatest concern in the
use of iPSCs in future therapies is the pos-
sibility of forming teratomas, there is no
doubt that, by the Yamanaka method,
iPSCs can be obtained from practically any
patient. These cell lines are very valuable
to try new therapies. That is why the indu-
stry invests more and more in this techno-
logy [28]. In a combination of reprogram-
ming without the cMyc transgene and the
enzymatic dissociation of the residual
iPSCs, beta-pancreatic cells have been ob-
tained without producing tumors when
transplanted [29].

Since Yamanaka and his colleagues di-
scovered the iPSCs, there were researchers
who argued that they were not equivalent
to the cells of embryonic origin and that
these are the most appropriate for the de-
velopment of research and new therapies.
However, a work that compares both types
of cells concludes that they are almost
equal and functionally indistinguishable
and that, if there are some genetic varia-
tions, these are due to the original cells of
the skin, from which the iPSCs were obtai-
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ned and not to the reprogramming process
[30]. Researchers identified 49 genes who-
se activity differs from embryonic stem
cells and iPSCs. Then they evaluated two
of them associated with the absorption and
digestion of glucose. The result was that
iPSCs are as efficient as the embryonic
ones and functionally equivalent in terms
of the activity of these genes [31]. Previou-
sly, the production of live and fertile ani-
mals by tetraploid complementation from
iPSCs cells had demonstrated their pluri-
potency [32]. It has also been verified that
the iPSCs fulfill what has been called “gold
standard”, that is: when transplanted to a
mouse embryo in the gastrula phase, they
are incorporated without difficulty and de-
velop normally without producing tumors
[33].

A study has been conducted to find out
if iPSCs accumulate mutations when they
are grown in the laboratory and, as a result,
could cause cancer. For this reason, it
would be unethical to use them until this
risk is eliminated. To do this, the mutation
rate between blood cells and iPSCs origi-
nating from these same cells was compa-
red. The result was that the mutation rate
of the iPSCs was 10 times lower than that
of the blood cells. It is important to note
that none of the mutations occurred in ge-
nes related to cancer. With this work, a bet-
ter understanding of the process of muta-
tion of somatic cells and cancer disease can
be reached [34]. According to a study, it is
necessary to monitor mutations in the mi-
tochondrial DNA (mtDNA) of the iPSCs,
especially if they come from the elderly be-
cause they could affect the therapeutic va-
lue of these cells [35].
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4. Experimental therapeutic applica-
tions

In disorders ranging from the loss of
dopaminergic neurons in Parkinson’s di-
sease, to hematopoietic stem cells in apla-
stic anemia or beta cell in type I diabetes
[36], as well as the need to restore endo-
thelial function in patients with vascular di-
sease, among other pathologies, the diffe-
rentiation of iPSCs towards cells of the tis-
sue destroyed by the disease, would theo-
retically be a valid application of this te-
chnique [37-39]. Obtaining iPSCs also
opens new perspectives for basic research
and drug discovery for hereditary skeletal
muscle diseases, since skeletal myocytes
have been obtained from iPSCs that are
electrophysiologically and structurally
equivalent to their embryonic counterparts
[40]. Subsequent works related to bioengi-
neering show the possibility of manufactu-
ring tissues and re-cellularize acellular
structures of hearts subjected to a washing
process with detergents, to which cardiac
muscle cells from the patient are added, ob-
tained from iPSCs [41].

A study with neurons obtained from
iPSCs of patients helps to understand the
cause of a certain type of hereditary de-
mentia that represents 50% of the cases of
dementia of people under 60 years old and
affects the cortical neurons of the frontal
and temporal lobes of the brain. The inve-
stigation served to determine that the Wnt
signaling path is defective [42]. It has also
been possible to obtain serotonin-produ-
cing neurons from iPSCs. This is important
because this type of substances intervene
in psychiatric disorders such as depression,
bipolar disorder or schizophrenia, in addi-



tion to regulating appetite, pulse, breathing,
sleep, anxiety and emotions [43].

In people with a weakened immune sy-
stem, T cells can undergo genetic repro-
gramming and thus transform them into
iPSCs. Subsequently, these iPSCs can be
differentiated again into T cells, with long-
life characteristics and maintaining their
capacity to recognize pathogens. This is of
singular importance in viral diseases such
as HIV and also in some cancers [44]. It
would be legitimate to use all these appli-
cations in case their safety and efficacy are
proven.

5. Drug development

The generation of induced pluripotent
stem cells offers an interesting alternative
for its use in the development of drugs.
These cells with unlimited proliferation ca-
pacity in undifferentiated state remain ge-
netically stable. Under suitable growing
conditions, they can be directed towards a
variety of types of the different germ la-
yers. In this manner, clones of iPSCs that
will give rise to specific cells in which to
test new drugs can be obtained from soma-
tic cells of a patient [45-46].

The first studies have focused on four
types of cells: cardiomyocytes, hepatocy-
tes, neurons and pancreatic islet beta cells.
Development biologists have studied these
types and much is known about the mole-
cular and biochemical signals that lead to
their differentiation in vivo. The human
cells of these tissues are particularly diffi-
cult to grow and expensive to obtain and in
limited quantity as well. For companies de-
dicated to obtaining new drugs, these cells
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are vital since many drugs are not being de-
veloped due to the presence of cardiotoxi-
city or hepatotoxicity. These studies are al-
so very important because neurodegenera-
tive diseases and diabetes are an increasing
cause of morbidity and mortality.

The development of new drugs is a co-
stly and slow process in which 90 percent
of drugs are not approved after a clinical
trial, due to efficacy or safety issues. Pre-
clinical studies are limited by available cell
lines or animal models and functional trials
relevant to the disease are lacking. That is
why iPSCs have many advantages over tra-
ditional methods. Several experimental
models of diseases obtained from iPSCs
have shown improvement in the phenotype
in response to therapeutic agents. From
these models, a more sensitive and accura-
te evaluation of the compounds under test
can be provided. This has been done in do-
paminergic neurons derived from iPSCs
with substances of neuroprotective proper-
ties, as a treatment strategy for Parkinson’s
in its early stages. By this procedure, the-
rapies are being evaluated for diseases of
the central nervous system [47-48].

To identify the genetic bases of hyper-
tension and the responses to drugs, phar-
macogenomics uses biological models.
The iPSCs of hypertensive patients provide
the possibility of having smooth muscle
cells and better knowing the response to
drugs [49]. In the case of bipolar psychia-
tric disorder, which is characterized by
phases of mania and depression, lithium
acts as a stabilizer, but is not effective in
all patients. With the iPSC technique, neu-
rons of the dentate gyrus of the hippocam-
pus were produced, both from patients who
responded to treatment with lithium and
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from patients for whom lithium was not ef-
fective. Mitochondrial abnormalities and
hyperexcitability were discovered, which
was only reversed by lithium in those neu-
rons from patients who had reacted favo-
rably to lithium treatment. This leads to the
conclusion that hyperexcitability is an ear-
ly endophenotype of bipolar disorder and
that models with iPSCs can be useful for
the discovery of new therapies [50].

A disease for which an in vitro model
has been produced by means of human
iPSCs is the Jervell and Lange-Nielsen
syndrome, which produces a serious heart
rhythm disorder and can lead to sudden de-
ath in young patients. The cause has its ori-
gin in homozygous mutations of recessive
genes. This leads to cardiomyocytes pre-
senting electrophysiological defects. With
this model, we can better understand the
mechanisms of recessive inheritance and,
at the same time, check the effectiveness of
certain medications [51].

For a better understanding of the patho-
physiology of Amyotrophic Lateral Scle-
rosis (ALS), motor neurons were obtained
from iPSCs and the effectiveness of a drug
was verified by verifying an improvement
in the activity and excitability of these neu-
rons when administering it [52]. From
iPSCs of glaucoma patients, it has been
possible to obtain retinal ganglion cells,
which provides a model for this disease
and facilitates the search for drugs for this
pathology [53]. From the ethical point of
view, the new drug cannot be prescribed
until its verification as a safe and effective
drug.
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6. First clinical trial

The first clinical trial with iPSCs began
in Japan to treat patients with macular de-
generation due to age [54; 55, p. 17]. Ma-
sayo Takahashi, of the Riken Center for
Developmental Biology in Kobe, Japan,
used retinal cells derived from iPSCs ob-
tained from the patient’s skin in a first ex-
periment in a Japanese woman of 70 years,
hoping that they do not produce rejection
[56-57]. Later this trial was suspended due
to the detection of mutations produced, ap-
parently, in the cell reprogramming pro-
cess. The worry of uncontrolled cell
growth with possible tumors led to this de-
cision [58-59]. It would be unethical to ex-
pose a person to a serious risk. Recently,
the first allogeneic transplant was reported
with cells derived from iPSCs from a donor
to treat macular degeneration [60].

7. Experimental models of neurological
diseases based on iPSCs

Because of its importance and the dif-
ficulty of obtaining cell lines for the study
of these pathologies, the advances in the
use of iPSCs in experimental models of
neurological pathologies and their applica-
tions in cell therapy are discussed below.
Part of what is discussed below is based on
the topics analyzed in a review work by
Okano and Yamanaka [61-62]. Ethics also
leads us to look for alternatives that avoid
harm to humans when investigating va-
rious pathologies.

The possibility of obtaining iPSCs
opens a new panorama to count on experi-
mental models of neurological pathologies,



since it is possible to derive from them
cells with the genotype of the disease. With
these models, we can learn more about the
beginning and development of the patho-
logy, as well as try new drugs in the cells
from the patient [63].

IPSCs have been obtained from endo-
thelial cells of the umbilical cord vein,
from which cells of the nervous system li-
neage are derived with high efficiency and
which present the morphology and physio-
logy of neurons, astrocytes and glial cells.
With them, we can study the development
of the nervous system as well as the patho-
physiology of various neurodegenerative
diseases and possible new medications
[64]. The advantage of this procedure is
that it is not invasive and decreases the pro-
bability of mutations compared to other
cells, such as fibroblasts, resulting from
aging and exposure to UV rays. It also has
a high reprogramming efficiency and fast
kinetics [65].

In people with neurodegenerative di-
seases, it is difficult to access affected sites
and animal models do not necessarily re-
flect human pathology. Biological or bio-
chemical changes have been known from
post-mortem brain analysis. With the deve-
lopment of iPSCs, it is possible to obtain
pluripotent stem cells from somatic cells
and thereby reproduce ex vivo the pheno-
mena that occur in in vivo patients, parti-
cularly disorders of the nervous system and
to better understand their pathophysiology
[66]. This technology has begun to study
various neurological diseases such as,
among others, amyotrophic lateral sclero-
sis, [67-69] spinal muscular atrophy, [70]
Friedreich’s ataxia, [71] Alzheimer’s, [72]
Parkinson’s, [73] Huntington’s disease,
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[74] fragile X syndrome, [75] adrenoleu-
kodystrophy [76] and schizophrenia [77-
78]. The safety, sensitivity and toxicity
tests of new medicines can be accelerated
by this technique.

7.1 Modeling Parkinson’s disease with
neurons obtained from iPSCs

The dopaminergic cells derived from
the iPSCs, obtained from cells of patients
with Parkinson’s, could serve as models of
the disease to investigate the changes that
occur in time since the beginning of the pa-
thology. Recently, it has been possible to
obtain a model of family Parkinson’s gene-
rally severe with these cells [79]. In neu-
rons obtained from iPSCs of a certain type
of Parkinson’s disease, the existence of the-
se alterations was confirmed, as well as the
accumulation of alpha-synuclein, as was
found in the analysis of corpses of patients
[80].

The main risk factor for Parkinson’s di-
sease is the heterozygous mutation of the
glucocerebrosidase gene that encodes the
lysosomal enzyme. In a research work with
brain cells obtained from iPSCs from the
skin of Parkinson’s patients with the gene-
tic mutation GBAN370S, a link is establi-
shed between the GBAN370S mutation
and the accumulation of alpha-synuclein
[81]. It has been possible to characterize
the dopaminergic neurons of the mesence-
phalon, from the differentiation of human
iPSCs from a Parkinson’s patient, proving
their physiological function in the synthe-
sis, release and reuptake of dopamine. This
constitutes a magnificent model for the stu-
dy of the disease [82]. The monogenic
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forms of Parkinson’s are particularly inte-
resting, because they are very similar to the
most common form of this pathology. They
also facilitate research through neurons de-
rived from iPSCs [83]. By inducing mono-
genic mutations in iPSCs derived from he-
althy subjects, by means of genome-editing
technologies (using adenoviral vectors), it
is possible to accurately analyze the patho-
genic mechanisms attributable to a single
gene.

7.2 Demonstration of genotype-phenoty-
pe causal relationships

Because of the discovery of last gene-
ration sequencers following the sequencing
of the human genome, many mutations re-
lated to some pathology and polymorphism
of a single nucleotide have been identified.
In most diseases, there is no formal proof
about a causal relationship between the ge-
netic mutation and the disease phenotype.
This can be verified by genome-editing te-
chnologies such as nucleases associated
with short, grouped and regularly intersper-
sed palindromic repeats (CRISPR) [84-90].
These techniques can be used for the reali-
zation of experiments in which the genetic
defect is corrected or the introduction of di-
sease-related mutations in iPSCs control
[91]. More recently, we have discovered
the way to edit a single base, both in DNA
and in RNA [92]. This could reveal geno-
type-phenotype causal relationships. At the
moment, it only applies to monogenetic di-
seases [93-94].
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8. Harmonize standards and protocols

Because of its characteristics of pluripo-
tency, the management of these cells entails
greater complexity because they must un-
dergo extensive growth processes, and a
long process of differentiation to generate
the desired phenotypes and eliminate the de-
fective ones, in addition to residual pluripo-
tent cells; for that reason various authors, in-
cluding Ian Wilmut and Shinya Yamanaka,
request to harmonize the norms to produce
clinical therapies from pluripotent stem cells
[95]. Although the biochemical and biolo-
gical techniques for reprogramming are al-
ready established, there are new bioenginee-
ring instruments for reprogramming, isola-
tion, differentiation [96] and the expansion
of iPSCs [97]. The differentiation protocols
to get the right cell from the iPSCs lead to
obtain a heterogeneous population. The se-
lection of the appropriate cell type is made,
up to now, with the surface antigens, but it
is not always effective, so a new, more effi-
cient biotechnology has been sought using
microRNA switches that consist of synthetic
RNA sequences [98]. Good Manufacturing
practices (GMP) to obtain iPSCs are curren-
tly necessary to ensure compliance with in-
ternational regulations regarding tissue sup-
ply, manufacturing, testing and storage [99].
This recommendation improves safety,
which it is a necessary condition for a pro-
cedure to be ethical.

9. An ethical way of doing research that
can be misused: iPSCs and EPS

In order that an investigation adheres to
ethics, it must first be scientifically valid.



In the previous discussion, we observe the
seriousness and good practices of the di-
scoverers of this type of cells and how they
have been obtaining procedures that invol-
ve advances in biomedicine to cure various
pathologies.

The origin of the iPSCs has an ethical
basis, as Gdmez [100] and Aznar [101-102]
state, since it is about avoiding the use of
left over embryos from in vitro fertilization.
In addition, the discoverers take into con-
sideration the previous scientific theories
and open the possibility of experimental
cell de-differentiation. Pre-clinical studies
in animals and clinical trials should be do-
ne with due respect and considering the ab-
solute dignity of the human person. Yama-
naka acts with these criteria and tries to ex-
trapolate, as far as possible, the data obtai-
ned with animals to the human being, avoi-
ding the use of cells of embryonic origin.
Only as a last resort, and starting from exi-
sting cell lines, he does approve the com-
parison of iPSCs with embryonic cells. On
the other hand, he warns about misuse of
his discovery to obtain oocytes and sperm
that may give rise to human embryos.

Despite having a clear biological utility,
the destruction of human embryos to obtain
cells from the internal mass of the embryo
ethically invalidates, in our opinion, any
use of cells of this origin. Therefore, iPSCs
are an excellent ethical alternative to the
use of embryonic stem cells, especially for
clinical purposes. The development of new
breeding techniques could avoid disadvan-
tages such as teratogenic capacity and cer-
tain genetic anomalies.

However, the possibility of producing
germ cells from iPSCs and, with them, li-
ving embryos opens a new ethical dilemma
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[103-106]. In recent years it has been re-
ported that it would be possible to manu-
facture primordial human germ cells, pre-
cursors of ovules and spermatozoa [107-
109]. It is not justifiable to obtain human
beings with this procedure, nor would it be
to use the technique of cell reprogramming
to obtain totipotent cells, from which ge-
nerate human blastocysts. In this line, ap-
parently, some researchers are working, as
stated in a publication about the so-called
extended pluripotent stem cells (EPS) that
could give rise not only to any tissue of the
three embryonic layers, but also extraem-
bryonic [110]. It would be something like
cloning by nuclear transfer and, therefore,
ethically unjustifiable. «During embryonic
development, both the fertilized ovum and
its initial cells are considered totipotent,
since they can give rise to all the embryo-
nic and extra embryonic lineages. Howe-
ver, the capture of stem cells with such in
vitro development potential has been a ma-
jor challenge in stem cell biology» says
Professor Izpisua Belmonte, «this is the
first study that reports the derivation of a
stable type of stem cells that shows a po-
tential for biological development similar
to totipotentiality for both embryonic and
extra-human lineages» [111]. After the fer-
tilization of the ovule, in very early stages,
specialization takes place either towards
embryonic tissues, or extra-embryonic, so
that until now it is not possible to maintain
the possibility of obtaining both types of
tissues. The cocktail discovered by these
researchers allows the cells to remain with
that potentiality. Teams of the Salk Institute
and Peking University found that, by com-
bining four chemical compounds and a
growth factor and applying this cocktail,
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the pluripotent cells could move to a more
immature state and this facilitates the for-
mation of human-animal chimeras to gene-
rate transgenic animals, as well as obtai-
ning organs for transplant, which leads to
another ethical problem [112].

On the contrary, the possibility of gene-
rating gametes obtained by genetic modi-
fication of somatic cells of people with so-
me inherited disease to give rise to healthy
children could be admitted. If in vitro fer-
tilization is used, it would entail the ethical
problems of this technique.

In conclusion, the initial idea that iPSCs
would avoid the use of embryonic cells has
not yet been consolidated and the possibi-
lity of using iPSCs to obtain human game-
tes and embryos has arisen, which oversha-
dows their impeccable starting point. Ba-
sically, this happens in many scientific ad-
vances: its suitability also depends on the
purposes for which it is used. In short, it
will not be enough to provide norms for the
proper use of technology with iPSCs, but
it will be necessary to promote the ethical
training of people and institutions so that
they can use it correctly.
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